Call for Abstract

3rd International Conference on Microbes and Beneficial Microbes, will be organized around the theme “Milestone Technologies of Beneficial Microbes for Better Human Life”

Beneficial Microbes 2019 is comprised of keynote and speakers sessions on latest cutting edge research designed to offer comprehensive global discussions that address current issues in Beneficial Microbes 2019

Submit your abstract to any of the mentioned tracks.

Register now for the conference by choosing an appropriate package suitable to you.

Probiotics are contained with a range of food and nutrition products such as dietary supplements, medicinal foods, biopharmaceuticals and medical devices delivering probiotics. Prebiotics foods are taken as dietary ingredients to maintain the Biological Symbiosis with the microbial flora. Dietary supplements created through the synergism of Pro and Pre-biotic are the Synbiotics. The nutrition supplemented with the beneficial microbial flora and the associated microbiome in human gut, restoring the human digestive system as a whole is said to be the “Probiotics”

  • Track 1-1Pediatric Nutrition
  • Track 1-2Probiotics for Women Health
  • Track 1-3Probiotics and Recombinant Probiotics
  • Track 1-4Non-LAB Probiotics – Bifidobacteria, Yeasts, Bacilli
  • Track 1-5Future of Probiotics and Prebiotics – Visions and Opportunities
  • Track 1-6Microbe-Host Interactions at the Molecular Scale
  • Track 1-7Synbiotics
  • Track 1-8Probioceuticals

Agricultural microbiology which is the most important field of Microbiology for the economic and medical importance it holds. This field explores various aspects like the genetics, physiology, molecular biology, virulence & pathogenicity and other aspects of the plant microbes. It deals with the infectious agents of the microbes, improvements and resistance of the agricultural crops, economic importance and the beneficial aspects of the normal agricultural flora. A complete study and understanding is crucial in application of the microbes for augmentation of soil nutrients, which is increasing the resistance of plants against the plant pathogen, for understanding the interaction a microbe has with the plant, and crop robustness.

  • Track 2-1Food microbiology
  • Track 2-2Bio-fertilizer Production
  • Track 2-3Fermentation technology
  • Track 2-4Soil and Applied Microbiology
  • Track 2-5Use of microorganisms to the soil fertility.
  • Track 2-6Microorganisms to control illnesses and pests.

Soil microorganisms are the most abundant of all the biota in soil and responsible for driving nutrient and organic matter cycling, soil fertility, soil restoration, plant health and ecosystem primary production. Beneficial microorganisms include those that create symbiotic associations with plant roots (rhizobia, mycorrhizal fungi, actinomycetes, diazotrophic bacteria), promote nutrient mineralization and availability, produce plant growth hormones, and are antagonists of plant pests, parasites or diseases (biocontrol agents). Many of these organisms are already naturally present in the soil, although in some situations it may be beneficial to increase their populations by either inoculation or by applying various agricultural management techniques that enhance their abundance and activity.

 

  • Track 3-1Rhizobia
  • Track 3-2Biocontrol fungi
  • Track 3-3Growth Promoting Bacteria
  • Track 3-4Nitrogen (N2) Fixing Bacteria
  • Track 3-5Plant-microbe interactions in a changing world
  • Track 3-6Impact of microorganisms on plant growth and health

The ability of gut microbiota to communicate with the brain and thus modulate behavior is emerging as an exciting concept in health and disease. The enteric microbiota interacts with the host to form essential relationships that govern homeostasis. Despite the unique enteric bacterial fingerprint of each individual, there appears to be a certain balance that confers health benefits. It is, therefore, reasonable to note that a decrease in the desirable gastrointestinal bacteria will lead to deterioration in gastrointestinal, neuroendocrine or immune relationships and ultimately disease.

  • Track 4-1Citrobacter Rodentium
  • Track 4-2Modulation of the Intestinal Micro-flora
  • Track 4-3Infection, central activation and behavior
  • Track 4-4Inflammatory Bowel Disease and Crohn’s Disease
  • Track 4-5Probiotics and behavior/central neurotransmitters
  • Track 4-6Behavioral and Neurochemical consequences of growing up germ-free

The term “Immunobiotics” has been proposed to define microbial strains able to beneficially regulate the mucosal immune system. Over the past few years, we have witnessed the emergence of robust development in the application of immunobiotics to combat infections, and researchers have found that the use of beneficial microbes is an interesting alternative to prevent and reduce the severity of infections in humans and animals. The effect of immunobiotics on the gut innate and adaptive immune responses to enteric pathogens has been recognized conclusively the influence of immunobiotics on the immune responses in distal mucosal sites and its impact in the outcome of respiratory infections has recently been exposed.

  • Track 5-1Pathogens
  • Track 5-2Beneficial microbes
  • Track 5-3Immunobiotic strains
  • Track 5-4Influenza virus infection

Oral microbiology is the study of the microorganisms (microbiota) of the oral cavity and their interactions between oral microorganisms or with the host. Microbes within dental plaque as the cause of dental  and periodontal diseases. The collective function of microbial communities is a major driver of homeostasis or dysbiosis and ultimately health or disease. Despite different aetiologies, periodontitis and caries are each driven by a feed forward loop between the microbiota and host factors (inflammation and dietary sugars, respectively) that favours the emergence and persistence of dysbiosis.

  • Track 6-1Periodontitis
  • Track 6-2Microbiota
  • Track 6-3Homeostasis
  • Track 6-4Dysbiosis

A microbiome is the community of microorganisms such as bacteria, archaea, fungi, as well as viruses that inhabit an ecosystem or organism. Microorganisms dominate all other life everywhere scientists have looked, including the human body, the Earth’s soils and sediments, the oceans and fresh waterways, the atmosphere and even extreme environments such as hydrothermal vents and subglacial lakes. Scientists also use the term microbiome to refer to all these genes associated with those life forms.

 

  • Track 7-1The Earth Microbiome
  • Track 7-2The Ocean Microbiome
  • Track 7-3The Animal Microbiome
  • Track 7-4Modulation of Microbiota
  • Track 7-5The Human Microbiome
  • Track 7-6The Atmospheric Microbiome

Marine microbiology is the study of microorganisms and non-organismic microbes that exist in saltwater environments, including the open ocean, coastal waters, estuaries, on marine surfaces and in sediments. Aquatic microbiology is the science that deals with microscopic living organisms in fresh or salt water systems. Aquaculture & Marine Biotechnology helps to control the marine organisms and water borne organisms. It is a process which has to do with marine or underwater environment. Blue Biotechnology is used to protect the marine organisms from harmful diseases underwater. The control of seasonal production and reproduction in farm animals has become major research goals. The applications of biotechnology to fish farming and ornamental fish production are numerous and valuable in both economic (food production, aquarium trade) and environmental terms (conservation of natural biodiversity for endangered species and protection of natural biodiversity from escapee domesticated strains). With the growing demand for fish products, biotechnology can help in the development of high quality, economical produce, thereby reducing pressure on natural population.

 

  • Track 8-1Applications of Marine Biotechnology
  • Track 8-2Marine Microbiology and Biodiversity
  • Track 8-3Biotechnology applications to Aquaculture
  • Track 8-4Marine-based Drug Discovery and Development
  • Track 8-5Environmental Risk of Aquatic Organisms from Genetic Biotechnology

Microbes are typically surrounded by different strains and species with whom they compete for scarce nutrients and limited space. Given such challenging living conditions, microbes have evolved many phenotypes with which they can outcompete and displace their neighbours: secretions to harvest resources, loss of costly genes whose products can be obtained from others, stabbing and poisoning neighbouring cells, or colonising spaces while preventing others from doing so. These competitive phenotypes appear to be common, although evidence suggests that, over time, competition dies down locally, often leading to stable coexistence of genetically distinct lineages. Nevertheless, the selective forces acting on competition and the resulting evolutionary fates of the different players depend on ecological conditions in a way that is not yet well understood. Here, we highlight open questions and theoretical predictions of the long-term dynamics of competition that remain to be tested. Establishing a clearer understanding of microbial competition will allow us to better predict the behaviour of microbes, and to control and manipulate microbial communities for industrial, environmental, and medical purposes.

  • Track 9-1Bacteria Communities
  • Track 9-2Bacterial pathogenomics
  • Track 9-3Host–microbe interactions
  • Track 9-4Interference and Exploitative competition
  • Track 9-5Manipulation of host-cell pathways by bacterial pathogens
  • Track 9-6An ecological and evolutionary perspective on human–microbe mutualism and disease
  • Track 9-7Social Evolution

Demands for food, animal feed, and feedstocks for bioenergy and biorefining applications, are increasing with population growth, urbanization and affluence. Low-input, sustainable, alternatives to petrochemical-derived fertilizers and pesticides are required to reduce input costs and maintain or increase yields, with potential biological solutions having an important role to play. Plant–microbe interactions span a wide range of relationships in which one or both of the organisms may have a beneficial, neutral or negative effect on the other partner. A relatively small number of beneficial plant–microbe interactions are well understood and already exploited; however, others remain understudied and represent an untapped reservoir for optimizing plant production. There may be near-term applications for bacterial strains as microbial biopesticides and biofertilizers to increase biomass yield from energy crops grown on land unsuitable for food production. Longer term aims involve the design of synthetic genetic circuits within and between the host and microbes to optimize plant production. A highly exciting prospect is that endosymbionts comprise a unique resource of reduced complexity microbial genomes with adaptive traits of great interest for a wide variety of applications.

  • Track 10-1Energy and microbes
  • Track 10-2Bacterial endophyte
  • Track 10-3Food and microbial engineering
  • Track 10-4Genetic engineering of microbes
  • Track 10-5Metabolic engineering and synthetic biology
  • Track 10-6Biomedical engineering and microbiological researches